Notes on Pytorch
Notes on Pytorch Learning
Notes on Pytorch
Notes on Pytorch
基础
Why GPU
GPU擅长处理可以并行化的任务,比如渲染,而AI模型的一些计算操作,比如池化、卷积是可以高度并行化的,因为计算的先后并不会影响最终的结果,因此训练模型适合用GPU
常用的torch包
Package | Description |
---|---|
torch | The top-level PyTorch package and tensor library. |
torch.nn | A subpackage that contains modules and extensible classes for building neural networks. |
torch.autograd | A subpackage that supports all the differentiable Tensor operations in PyTorch. |
torch.nn.functional | A functional interface that contains typical operations used for building neural networks like loss functions, activation functions, and convolution operations. |
torch.optim | A subpackage that contains standard optimization operations like SGD and Adam. |
torch.utils | A subpackage that contains utility classes like data sets and data loaders that make data preprocessing easier. |
torchvision | A package that provides access to popular datasets, model architectures, and image transformations for computer vision. |
动态计算图(Dynamic Computing Graph)
能够在运行时动态地构建计算图
Tensor
对于多维tensor来说,其每个维度的长度要相同
- rank:表示tensor的维数
- axis:用于指定特定的tensor维度
This post is licensed under CC BY 4.0 by the author.